
Context-Free Grammars

Chapter 11



Languages and Machines



Rewrite Systems and Grammars

A rewrite system (or production system or rule-based 

system) is:

● a list of rules, and 

● an algorithm for applying them.  

Each rule has a left-hand side and a right hand side. 

Example rules:

S  aSb 

aS  

aSb bSabSa



Simple-rewrite

simple-rewrite(R: rewrite system, w: initial string) = 

1. Set working-string to w.

2. Until told by R to halt do:

Match the lhs of some rule against some part of 

working-string.

Replace the matched part of working-string with the 

rhs of the rule that was matched.

3. Return working-string.



A Rewrite System Formalism

A rewrite system formalism specifies:

● The form of the rules

● How simple-rewrite works:

● How to choose rules?

● When to quit?



An Example

w = SaS

Rules: 
[1]   S  aSb

[2]   aS  

● What order to apply the rules?

● When to quit?



Rule Based Systems

● Expert systems

● Cognitive modeling

● Business practice modeling

● General models of computation

● Grammars



Grammars Define Languages

A grammar is a set of rules that are stated in terms of 

two alphabets:

• a terminal alphabet, , that contains the symbols that 

make up the strings in L(G), and 

•a nonterminal alphabet, the elements of which will 

function as working symbols that will be used while the 

grammar is operating.  These symbols will disappear by 

the time the grammar finishes its job and generates a 

string.

A grammar has a unique start symbol, often called S.   



Using a Grammar to Derive a String

Simple-rewrite (G, S) will generate the strings in L(G).  

We will use the symbol  to indicate steps in a 

derivation.  

A derivation could begin with:

S  aSb aaSbb …



Generating Many Strings

• Multiple rules may match.

Given: S  aSb, S  bSa, and S  

Derivation so far: S  aSb aaSbb

Three choices at the next step:

S  aSb aaSbb aaaSbbb (using rule 1), 

S  aSb aaSbb aabSabb (using rule 2), 

S  aSb aaSbb aabb (using rule 3).



Generating Many Strings

• One rule may match in more than one way.

Given: S  aTTb, T  bTa, and T  

Derivation so far: S  aTTb

Two choices at the next step:

S  aTTb abTaTb

S  aTTb aTbTab



When to Stop
May stop when:

1. The working string no longer contains any nonterminal 
symbols (including, when it is ).

In this case,  we say that the working string is generated
by the grammar.  

Example:

S  aSb aaSbb aabb



When to Stop
May stop when:

2. There are nonterminal symbols in the working string but 
none of them appears on the left-hand side of any rule in 
the grammar.

In this case, we have a blocked or non-terminated derivation 
but no generated string.

Example:

Rules: S  aSb, S  bTa, and S  

Derivations: S  aSb abTab [blocked]



When to Stop

It is possible that neither (1) nor (2) is achieved.  

Example: 

G contains only the rules S  Ba and B  bB, with S the start 
symbol.  

Then all derivations proceed as:

S  Ba bBa bbBa bbbBa bbbbBa ...



Context-free Grammars, Languages, 

and PDAs

Context-free 

Language

Context-free 

Grammar

PDA

L

Accepts



More Powerful Grammars

Regular grammars must always produce strings one character at 

a time, moving left to right.

But it may be more natural to describe generation more flexibly.

Example 1:  L = ab*a

S aBa S  aB

B   vs. B  a

B  bB B  bB

Example 2: L = {anb*an, n  0}

S  B
S  aSa

B  
B  bB

Key distinction: Example 1 is not self-embedding. 



Context-Free Grammars

No restrictions on the form of the right hand sides.

S  abDeFGab

But require single non-terminal on left hand side.

S 

but not  ASB 



AnBn



AnBn

S  
S  aSb



Balanced Parentheses



Balanced Parentheses

S  

S  SS

S  (S)



Context-Free Grammars

A context-free grammar G is a quadruple,

(V, , R, S), where:

● V is the rule alphabet, which contains nonterminals  

and terminals.

●  (the set of terminals) is a subset of V,

● R (the set of rules) is a finite subset of (V - ) V*, 

● S (the start symbol) is an element of V - .

Example:

({S, a, b},  {a, b},   {S  a S b, S  },  S)



Derivations

x G y iff x = A

and  A   is in R

y =   

w0 G w1 G w2 G . . . G wn is a derivation in G. 

Let G* be the reflexive, transitive closure of G.  

Then the language generated by G, denoted L(G), is:

{w  * : S G* w}. 



An Example Derivation

Example:

Let G = ({S, a, b}, {a, b}, {S  a S b, S  }, S)

S  a S b aa S bb aaa S bbb aaabbb

S * aaabbb



Definition of a Context-Free 

Grammar

A language L is context-free iff it is generated by some

context-free grammar G.   



Recursive Grammar Rules 

• A rule is recursive iff it is  X  w1Yw2, where:

Y * w3Xw4 for some w1, w2, w3, and w in V*.  

• A grammar is recursive iff it contains at least one 

recursive rule.   

• Examples: S  (S)  



Recursive Grammar Rules 

• A rule is recursive iff it is  X  w1Yw2, where:

Y * w3Xw4 for some w1, w2, w3, and w in V*.  

• A grammar is recursive iff it contains at least one 

recursive rule.   

• Examples: S  (S)  S  (T) 



Recursive Grammar Rules 

• A rule is recursive iff it is  X  w1Yw2, where:

Y * w3Xw4 for some w1, w2, w3, and w in V*.  

• A grammar is recursive iff it contains at least one 

recursive rule.   

• Examples: S  (S)  S  (T) 

T  (S)  



Self-Embedding Grammar Rules 

• A rule in a grammar G is self-embedding iff it is :

X  w1Yw2, where Y * w3Xw4 and 

both w1w3 and w4w2 are in +. 

• A grammar is self-embedding iff it contains at least one 

self-embedding rule.  

• Example: S  aSa is self-embedding

S  aS is recursive but not self-

embedding

S  aT

T  Sa is self-embedding



Recursive and Self-Embedding 

Grammar Rules 

• A rule in a grammar G is self-embedding iff it is :

X  w1Yw2, where Y * w3Xw4 and 

both w1w3 and w4w2 are in +. 

• A grammar is self-embedding iff it contains at least one 

self-embedding rule.  

• Example: S  aSa is self-embedding

S  aS is recursive but not self-

embedding



Where Context-Free Grammars 

Get Their Power

• If a grammar G is not self-embedding then L(G) is 

regular.   

• If a language L has the property that every grammar 

that defines it is self-embedding, then L is not regular.  



PalEven = {wwR : w  {a, b}*}



PalEven = {wwR : w  {a, b}*}

G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSa

S  bSb

S   }.



Equal Numbers of a’s and b’s

Let L = {w  {a, b}*: #a(w) = #b(w)}. 



Equal Numbers of a’s and b’s

Let L = {w  {a, b}*: #a(w) = #b(w)}. 

G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSb

S  bSa

S  SS

S   }.



Arithmetic Expressions 

G = (V, , R, E), where
V = {+, *, (, ), id, E},

 = {+, *, (, ), id},

R = {

E  E + E

E  E  E

E  (E)
E  id }



BNF

• The symbol | should be read as “or”.  

Example: S  aSb | bSa | SS | 

• Allow a nonterminal symbol to be any sequence of 
characters surrounded by angle brackets.  

Examples of nonterminals: 

<program>       

<variable>  

A notation for writing practical context-free grammars



BNF for a Java Fragment

<block> ::= {<stmt-list>} | {}

<stmt-list> ::= <stmt> | <stmt-list> <stmt>

<stmt> ::= <block> | while (<cond>) <stmt> | 

if (<cond>) <stmt> | 

do <stmt> while (<cond>); | 

<assignment-stmt>; | 

return | return <expression> | 

<method-invocation>;



Spam Generation

These production rules yield 1,843,200 possible spellings. 

How Many Ways Can You Spell V1@gra? By Brian Hayes

American Scientist, July-August 2007

http://www.americanscientist.org/template/AssetDetail/assetid/55592

http://www.americanscientist.org/template/AuthorDetail/authorid/490
http://www.americanscientist.org/template/AssetDetail/assetid/55592


HTML
<ul>

<li>Item 1, which will include a sublist</li>

<ul>

<li>First item in sublist</li>

<li>Second item in sublist</li>

</ul>

<li>Item 2</li>

</ul>

A grammar:

/* Text is a sequence of elements.

HTMLtext  Element HTMLtext | 

Element UL | LI | …    (and other kinds of elements that 

are allowed in the body of an HTML document)

/* The <ul> and </ul> tags must match.

UL <ul> HTMLtext </ul>

/* The <li> and </li> tags must match.

LI <li> HTMLtext </li>



English

S  NP VP

NP  the Nominal | a Nominal | Nominal | 

ProperNoun | NP PP

Nominal  N | Adjs N

N  cat | dogs | bear | girl | chocolate | rifle

ProperNoun  Chris | Fluffy

Adjs  Adj Adjs | Adj

Adj  young | older | smart

VP  V | V NP | VP PP

V  like | likes | thinks | shots | smells

PP  Prep NP

Prep  with



Designing Context-Free Grammars

● Generate related regions together.

AnBn

● Generate concatenated regions:

A  BC

● Generate outside in:

A  aAb



Outside-In Structure and RNA Folding



A Grammar for RNA Folding

<family>  <tail> <stemloop> [1]

<tail>  <base> <base> <base> [1]

<stemloop>  C <stemloop-5> G [.23]

<stemloop>  G <stemloop-5> C [.23]

<stemloop>  A <stemloop-5> U [.23]

<stemloop>  U <stemloop-5> A [.23]

<stemloop> G <stemloop-5> U [.03]

<stemloop> U <stemloop-5> G [.03]

<stemloop-5> …



Concatenating Independent 

Languages

Let L = {anbncm : n, m  0}.  

The cm portion of any string in L is completely 

independent of the anbn portion, so we should generate 

the two portions separately and concatenate them 

together.  



Concatenating Independent 

Languages

Let L = {anbncm : n, m  0}.  

The cm portion of any string in L is completely 

independent of the anbn portion, so we should generate 

the two portions separately and concatenate them 

together.  

G = ({S, N, C, a, b, c},  {a, b, c}, R, S} where:

R = { S  NC
N  aNb

N  
C  cC

C   }. 



L = {                         : k  0 and i (ni  0)}kk nnnnnn
bababa ...2211

Examples of strings in L: , abab, aabbaaabbbabab

Note that L = {anbn : n  0}*.



L = {                         : k  0 and i (ni  0)}kk nnnnnn
bababa ...2211

Examples of strings in L: , abab, aabbaaabbbabab

Note that L = {anbn : n  0}*.

G = ({S, M, a, b}, {a, b}, R, S} where:

R = { S  MS

S  
M  aMb

M  }. 



L = {anbm : n  m}

G = (V, , R, S), where
V = {a, b, S,        },

 = {a, b},

R =

Another Example: Unequal a’s and b’s



Another Example: Unequal a’s and b’s

L = {anbm : n  m}

G = (V, , R, S), where
V = {a, b, S, A, B},

 = {a, b},

R =

S  A /* more a’s than b’s

S  B /* more b’s than a’s

A  a /* at least one extra a generated

A  aA

A  aAb

B  b /* at least one extra b generated

B  Bb

B  aBb



Simplifying Context-Free Grammars

G = ({S, A, B, C, D, a, b}, {a, b}, R, S), where 

R =

{ S  AB | AC

A  aAb | 

B  aA

C  bCa

D  AB }



Unproductive Nonterminals

removeunproductive(G: CFG) = 

1. G = G. 

2. Mark every nonterminal symbol in G as unproductive.

3. Mark every terminal symbol in G as productive.

4. Until one entire pass has been made without any new 

symbol being marked do:

For each rule X   in R do:

If every symbol in  has been marked as 

productive and X has not yet been marked as 

productive then:

Mark X as productive.

5. Remove from G every unproductive symbol.

6. Remove from G every rule that contains an 

unproductive symbol. 

7. Return G.



Unreachable Nonterminals

removeunreachable(G: CFG) = 

1. G = G.

2. Mark S as reachable.

3. Mark every other nonterminal symbol as unreachable.

4. Until one entire pass has been made without any new 

symbol being marked do:

For each rule X  A (where A  V - ) in R do:

If X has been marked as reachable and A has not then:

Mark A as reachable.

5. Remove from G every unreachable symbol.

6. Remove from G every rule with an unreachable symbol on 

the left-hand side. 

7. Return G.



Proving the Correctness of a Grammar

AnBn = {anbn : n  0}

G = ({S, a, b}, {a, b}, R, S),

R = {  S  a S b

S   }

● Prove that G generates only strings in L.

● Prove that G generates all the strings in L.



Proving the Correctness of a Grammar

To prove that G generates only strings in L:

Imagine the process by which G generates a string as the 

following loop:

1. st := S.

2. Until no nonterminals are left in st do: 

2.1.   Apply some rule in R to st.

3. Output st.

Then we construct a loop invariant I and show that:

● I is true when the loop begins,

● I is maintained at each step through the loop, and

● I  (st contains only terminal symbols)  st  L.



AnBn = {anbn : n  0}. G = ({S, a, b}, {a, b}, R, S),

R = { S  a S b

S   }.

● Prove that G generates only strings in L:

Let I = (#a(st) = #b(st))  (st  a*(S  ) b*).

Proving the Correctness of a Grammar



AnBn = {anbn : n  0}. G = ({S, a, b}, {a, b}, R, S),

R = { S  a S b

S   }.

● Prove that G generates all the strings in L:

Base case: |w| = 0.

Prove: If every string in AnBn of length k, where k is even, can be 

generated by G, then every string in AnBn of length k + 2 can also 

be generated.  For any even k, there is exactly one string in AnBn

of length k: ak/2bk/2.  There is also only one string of length k + 2, 

namely aak/2bk/2b.  It can be generated by first applying rule (1) to 

produce aSb, and then applying to S whatever rule sequence 

generated ak/2bk/2.  By the induction hypothesis, such a sequence 

must exist. 

Proving the Correctness of a Grammar



L = {w  {a, b}*: #a(w) = #b(w)}



L = {w  {a, b}*: #a(w) = #b(w)}

G = {{S, a, b}, {a, b}, R, S}, where:

R = {S  aSb (1)

S  bSa (2)

S  SS (3)

S   }. (4)

● Prove that G generates only strings in L:

Let (w) = #a(w) - #b(w).

Let I = st  {a, b, S}*  (st) = 0.



L = {w  {a, b}*: #a(w) = #b(w)}

G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSb (1)

S  bSa (2)

S  SS (3)

S   }. (4)

● Prove that G generates all the strings in L:

Base case:

Induction step: if every string of length k can be generated, then 

every string w of length k+2 can be.

w is one of: axb, bxa, axa, or bxb.

Suppose w is axb or bxa: Apply rule (1) or (2), then whatever 

sequence generates x.

Suppose w is axa or bxb: 



L = {w  {a, b}*: #a(w) = #b(w)}

G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSb (1)

S  bSa (2)

S  SS (3)

S   }. (4)

Suppose w is axa:  |w|  4. We show that w = vy, where v and

y are in L, 2  |v|  k, and 2  |y|  k.  

If that is so, then G can generate w by first applying rule (3) to

produce SS, and then generating v from the first S and y from

the second S.  By the induction hypothesis, it must be possible

for it to do that since both v and y have length  k. 



L = {w  {a, b}*: #a(w) = #b(w)}

G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSb (1)

S  bSa (2)

S  SS (3)

S   }. (4)

Suppose w is axa: we show that w = vy, where v and y are in L, 2  |v|  k,

and 2  |y|  k.  

Build up w one character at a time.  After one character, we have a.  (a) = 1.  

Since w  L, (w) = 0.  So (ax) = -1.  The value of  changes by exactly 1 

each time a symbol is added to a string.  Since  is positive when only a 

single character has been added and becomes negative by the time the 
string ax has been built, it must at some point before then have been 0.  Let 

v be the shortest nonempty prefix of w to have a value of 0 for .  Since v is 

nonempty and only even length strings can have  equal to 0, 2  |v|.  Since 
 became 0 sometime before w became ax, v must be at least two 

characters shorter than w, so |v|  k.  Since (v) = 0, v  L.  Since w = vy, we 

know bounds on the length of y: 2  |y|  k.  Since (w) = 0 and (v) = 0, (y) 

must also be 0 and so y  L. 



Accepting Strings

Regular languages:

We care about recognizing patterns and taking 

appropriate actions.



Context free languages:

We care about structure.

E

E + E

id E    *    E

3 id id

5 7

Structure



To capture structure, we must capture the path we took 

through the grammar.  Derivations do that.

Example:

S  

S  SS

S  (S)

1        2           3             4               5              6

S  SS  (S)S  ((S))S  (())S  (())(S)  (())()

S  SS  (S)S  ((S))S  ((S))(S)  (())(S)  (())()

1        2           3             5                4              6

But the order of rule application doesn’t matter.

Derivations



Parse trees capture essential structure:

1        2           3             4               5             6

S  SS  (S)S  ((S))S  (())S  (())(S)  (())()

S  SS  (S)S  ((S))S  ((S))(S)  (())(S)  (())()

1        2           3             5                4              6

S

S S

(      S      )  (      S      )

(   S   )             



Derivations



Parse Trees

A parse tree, derived by a grammar G = (V, , R, S), is 

a rooted, ordered tree in which:

● Every leaf node is labeled with an element of   {},

● The root node is labeled S, 

● Every other node is labeled with some element of:

V – , and

● If m is a nonleaf node labeled X and the children of m

are labeled x1, x2, …, xn, then R contains the rule  

X  x1, x2, …, xn.



S

NP VP

Nominal V NP

Adjs N Nominal

Adj N

the smart cat                    smells           chocolate

Structure in English



Generative Capacity

Because parse trees matter, it makes sense, given a 

grammar G, to distinguish between:

● G’s weak generative capacity, defined to be the 

set of strings, L(G), that G generates, and

● G’s strong generative capacity, defined to be the 

set of parse trees that G generates.



Algorithms Care How We Search

Algorithms for generation and recognition must be 

systematic.  They typically use either the leftmost 

derivation or the rightmost derivation.

S

S S

( S ) ( S )

( S    ) 





Derivations of The Smart Cat

• A left-most derivation is:

S  NP VP  the Nominal VP  the Adjs N VP 

the Adj N VP  the smart N VP  the smart cat VP 

the smart cat V NP  the smart cat smells NP 

the smart cat smells Nominal  the smart cat smells N 

the smart cat smells chocolate 

• A right-most derivation is:

S  NP VP  NP V NP  NP V Nominal  NP V N 

NP V chocolate  NP smells chocolate 

the Nominal smells chocolate 

the Adjs N smells chocolate 

the Adjs cat smells chocolate 

the Adj cat smells chocolate 

the smart cat smells chocolate



Regular Expression Regular Grammar

(a  b)*a (a  b)* S  a

S  bS

choose a from (a  b) S  aS

choose a from (a  b) S  aT

choose a T  a

T  b

choose a T  aT

choose a from (a  b) T  bT

choose a from (a  b) 

Derivation is Not Necessarily Unique
The is True for Regular Languages Too



Ambiguity

A grammar is ambiguous iff there is at least one string 

in L(G) for which G produces more than one parse tree.

For most applications of context-free grammars, this is 

a problem.



An Arithmetic Expression Grammar

E  E + E

E  E  E

E  (E)
E  id



Even a Very Simple Grammar Can be 

Highly Ambiguous
S 

S  SS

S  (S)



Inherent Ambiguity

Some languages have the property that every grammar 

for them is ambiguous.  We call such languages 

inherently ambiguous.

Example:

L = {anbncm: n, m  0}  {anbmcm: n, m  0}.



Inherent Ambiguity

L = {anbncm: n, m  0}  {anbmcm: n, m  0}.

One grammar for L has the rules:

S  S1 | S2

S1  S1c | A /* Generate all strings in {anbncm}.

A  aAb | 

S2  aS2 | B /* Generate all strings in {anbmcm}.

B  bBc | 

Consider any string of the form anbncn.

L is inherently ambiguous.



Inherent Ambiguity

Both of the following problems are undecidable:

• Given a context-free grammar G, is G ambiguous?

• Given a context-free language L, is L inherently 

ambiguous?



But We Can Often Reduce Ambiguity

We can get rid of:

●  rules like S  ,

● rules with symmetric right-hand sides, e.g.,

S  SS

E  E + E

● rule sets that lead to ambiguous attachment of 

optional postfixes.



A Highly Ambiguous Grammar

S 

S  SS

S  (S)



Resolving the Ambiguity with a 

Different Grammar

The biggest problem is the  rule.

A different grammar for the language of balanced 

parentheses:

S*  

S*  S

S  SS

S  (S)

S  ()



Nullable Variables

Examples:

S  aTa

T  

S  aTa

T  A B

A  

B  



Nullable Variables

A variable X is nullable iff either:

(1) there is a rule X  , or

(2) there is a rule X  PQR… and P, Q, R, … 

are all nullable.

So compute N, the set of nullable variables, as follows:

1. Set N to the set of variables that satisfy (1).  

2. Until an entire pass is made without adding anything

to N do

Evaluate all other variables with respect to (2).  

If any variable satisfies (2) and is not in N, insert it. 



A General Technique for Getting Rid of -Rules

Definition: a rule is modifiable iff it is of the form:

P  Q, for some nullable Q. 

removeEps(G: cfg) =

1. Let G = G.

2. Find the set N of nullable variables in G.  

3. Repeat until G contains no modifiable rules that 

haven’t been  

processed:

Given the rule P  Q, where Q  N, add the rule P

 

if it is not already present and if    and if P  .  

4. Delete from G all rules of the form X  .

5. Return G.

L(G) = L(G) – {}



An Example

G = {{S, T, A, B, C, a, b, c}, {a, b, c}, R, S), R =

{ S  aTa

T  ABC
A  aA | C

B  Bb | C

C  c |  } 



What If   L?

atmostoneEps(G: cfg) = 

1. G = removeEps(G).

2. If SG is nullable then /* i. e.,   L(G)

2.1 Create in G a new start symbol S*.

2.2 Add to RG the two rules: 

S*  

S*  SG.

3. Return G.



But There is Still Ambiguity

S*   What about ()()() ?

S*  S

S  SS

S  (S)

S  ()



But There is Still Ambiguity

S*   What about ()()() ?

S*  S

S  SS

S  (S)

S  ()



But There is Still Ambiguity

S*   What about ()()() ?

S*  S

S  SS

S  (S)

S  ()



Eliminating Symmetric Recursive Rules

S*  

S*  S

S  SS

S  (S)

S  ()

Replace    S  SS with one of:

S  SS1 /* force branching to the left

S  S1S /* force branching to the right

So we get:

S*   S  SS1

S*  S S  S1

S1  (S)

S1  () 



Eliminating Symmetric Recursive Rules

So we get:

S*  

S*  S

S  SS1

S  S1

S1  (S)

S1  ()

S* 

S

S S1

S S1

S1

(   ) (   )           (   )



Arithmetic Expressions

E  E + E

E  E  E

E  (E)
E  id }

E E

E E E E

E E                     E E

id        id         id                   id     id       id

Problem 1: Associativity



Arithmetic Expressions

E  E + E

E  E  E

E  (E)
E  id }

E E

E E E E

E E                     E E

id        id        +      id                   id     id      +        id

Problem 2: Precedence



Arithmetic Expressions - A Better Way

E  E + T

E T

T  T * F

T  F

F  (E)

F  id

Examples:

id + id * id

id * id * id



Arithmetic Expressions - A Better Way

E  E + T

E T

T  T * F

T  F

F  (E)

F  id



The Language of Boolean Logic

G = (V, , R, E), where
V = {, , , , (, ), id, E, },

 = {, , , , (, ), id},

R = { E  E  E1

E  E1

E1  E1  E2

E1 E2

E2  E2  E3

E2  E3

E3   E3

E3  E4

E4 (E)
E4  id



Boolean Logic isn’t Regular

Suppose  BL were regular.  Then there is a k as specified in 

the Pumping Theorem.

Let w be a string of length 2k + 1 of the form:

w =     ( ( ( ( ( ( id ) ) ) ) ) ) 

k

x y

y = (p for some p > 0

Then the string that is identical to w except that it has p

additional (’s at the beginning would also be in BL.  But it 

can’t be because the parentheses would be mismatched.  

So BL is not regular.



Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>

<stmt> ::= if <cond> then <stmt> else <stmt>

Consider:

if cond1 then if cond2 then st1 else st2



Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>

<stmt> ::= if <cond> then <stmt> else <stmt>

Consider:

if cond1 then if cond2 then st1 else st2



Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>

<stmt> ::= if <cond> then <stmt> else <stmt>

Consider:

if cond1 then if cond2 then st1 else st2



<Statement> ::= <IfThenStatement> |  <IfThenElseStatement> | 

<IfThenElseStatementNoShortIf>

<StatementNoShortIf> ::= <block> | 

<IfThenElseStatementNoShortIf> | …
<IfThenStatement> ::= if ( <Expression> )  <Statement>

<IfThenElseStatement> ::= if ( <Expression> ) 

<StatementNoShortIf> else <Statement>

<IfThenElseStatementNoShortIf> ::= 
if ( <Expression> ) <StatementNoShortIf> 

else <StatementNoShortIf>

<Statement>

<IfThenElseStatement>

if      (cond)        <StatementNoShortIf>       else      <Statement>

The Java Fix



Java Audit Rules Try to Catch These

From the CodePro Audit Rule Set:

Dangling Else

Severity: Medium 

Summary

Use blocks to prevent dangling else clauses. 

Description

This audit rule finds places in the code where else 

clauses are not preceded by a block because these 

can lead to dangling else errors. 

Example

if (a > 0) if (a > 100) b = a - 100; else b = -a; 



Proving that G is Unambiguous

A grammar G is unambiguous iff every string derivable in G

has a single leftmost derivation.

S*   (1)

S*  S (2)

S  SS1 (3)

S  S1 (4)

S1  (S) (5)

S1  ()  (6)

● S*: 

● S1: If the next two characters to be derived are (), S1

must expand by rule (6).  Otherwise, it must expand 

by rule (5).



S*   (1)

S*  S (2)

S  SS1 (3)

S  S1 (4)

S1  (S) (5)

S1  ()  (6)

The siblings of m is the smallest set that includes any matched set p

adjacent to m and all of p’s siblings.  

Example:

( ( ) ( ) ) ( ) ( ) 

1   2     3   4

5

The set () labeled 1 has a single sibling, 2.  The set (()()) labeled 5 has 

two siblings, 3 and 4.

The Proof, Continued



The Proof, Continued

S*   (1)

S*  S (2)

S  SS1 (3)

S  S1 (4)

S1  (S) (5)

S1  ()  (6)

● S: 

● S must generate a matched set, possibly with siblings.  

● So the first terminal character in any string that S generates is (. 

Call the string that starts with that ( and ends with the ) that 

matches it, s.  

● S1 must generate a single matched set with no siblings.  

● Let n be the number of siblings of s.  In order to generate 

those siblings, S must expand by rule (3) exactly n times 

before it expands by rule (4). 



The Proof, Continued

S*   (1)

S*  S (2)

S  SS1 (3)

S  S1 (4)

S1  (S) (5)

S1  ()  (6)

● S: 

((()()))  ()  ()  (()())

s

s has 3 siblings.

S must expand by rule (3) 3 times before it uses rule (4). 

Let p be the number of occurrences of S1 to the right of S.  

If p < n, S must expand by rule (3).  

If p = n, S must expand by rule (4).



Going Too Far

S  NP VP

NP  the Nominal | Nominal | ProperNoun | NP PP

Nominal  N | Adjs N
N  cat | girl | dogs | ball | chocolate | 

bat

ProperNoun  Chris | Fluffy

Adjs  Adj Adjs | Adj
Adj  young | older | smart

VP  V | V NP | VP PP
V  like | likes | thinks | hits

PP  Prep NP
Prep  with

● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.



Going Too Far

● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.



● Chris likes the girl with the cat.

● Chris shot the bear with a rifle.

● Chris shot the bear with a rifle.

Going Too Far



Comparing Regular and Context-Free Languages

Regular Languages Context-Free Languages

● regular exprs.

or

● regular grammars ● context-free grammars

● recognize ● parse



A Testimonial

Also, you will be happy to know that I just made use of the 

context-free grammar skills I learned in your class! I am 

working on Firefox at IBM this summer and just found an 

inconsistency between how the native Firefox code and a 

plugin by Adobe parse SVG path data elements. In order to 

figure out which code base exhibits the correct behavior I 

needed to trace through the grammar 

http://www.w3.org/TR/SVG/paths.html#PathDataBNF. T

hanks to your class I was able to determine that the bug is in 

the Adobe plugin. Go OpenSource!

http://www.w3.org/TR/SVG/paths.html#PathDataBNF

