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SUMMARY

The second moment numerical method (SMM) of Egan and Mahoney [Numerical modeling of advection
and diffusion of urban area source pollutant. Journal of Applied Meteorology 1972; 11: 312-322] is
adapted to solve for the pure advection transport equation in a variety of flow fields. SMM eliminates
numerical diffusion by employing a procedure that takes into account the first and second moments of
mass distribution in each grid element. For pure translational flow fields, the method is conservative,
positive definite and shape-preserving. In rotational and/or shear flows, the accuracy of SMM is
significantly reduced. Two improvements are presented to make the SMM applicable to a wider range of
flow problems. It is shown that the improved SMM (ISMM) is less diffusive and more shape-preserving
than the SMM in rotational and/or deformational flows. The ISMM can also be used to solve for a color
function in compressible flow fields. The computational efficiency of this method is compared with that
of other methods and, for a given accuracy, it is shown that ISMM is a cost-effective, non-diffusive and
shape-preserving method. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The pure advection transport equation is frequently encountered in modeling the composition-
ally heterogeneous fluid flows associated with geophysical, meteorological and reservoir
engineering problems. The presence of sharp material interfaces in such flows requires accurate
numerical techniques to prevent numerical diffusion and dispersion. Numerical methods based
on Eulerian description usually suffer from numerical diffusion [2] due to truncation errors in
the approximation of the spatial derivatives. Lagrangian based methods are accurate but
computationally expensive [3], and the interpolative semi-Lagrangian methods are not strictly
conservative [4]. One way to reduce the effect of numerical diffusion in a fixed grid is to advect
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the material in the direction of the velocity field at each time step. The material accumulated
in each control volume is then calculated and a mean concentration value is assigned to each
grid node. In this sense, the procedure can be regarded as quasi-Lagrangian. One such
quasi-Lagrangian method is the second moment method (SMM) of Egan and Mahoney [1],
which minimizes numerical diffusion by redistributing the material inside a control volume
without introducing unphysical oscillations to the solution. SMM is an explicit forward-in-time
method, valid for Courant numbers as high as 1. It is more difficult to implement and it
requires considerable memory compared with the Eulerian based methods. SMM was devel-
oped to solve the incompressible advective—diffusive transport equation and has been success-
fully used in atmospheric pollutant transfer [5] and pollutant transfer in surface waterways [6].
It is a shape-preserving, conservative and relatively cost-effective method for purely transla-
tional flow fields. These advantages are not entirely shared by other methods. However, its
performance is seriously degraded in the rotational and deformational flow fields and it
accumulates mass at the stagnation points. In this paper we improve the advection term in
SMM and make it useful for solving the pure advection transport equation for a wide range
of fluid flows. Our motivation for the improvement emerged from the good performance of the
SMM in the transport of pollutants. We essentially make two changes to SMM. The first
enhances the accuracy of SMM by reducing the false diffusion associated with non-transla-
tional flow fields. The second makes the method capable of handling flow fields with symmetry
lines and stagnation points. Furthermore, the improved SMM (ISMM) is useful for advection
of a color function in compressible flow fields.

2. BACKGROUND
The equation governing the advection of a tracer field C is

oc -
VC= 1
61+VVC 0 (1)

where V denotes the velocity and ¢ is time. The tracer field C specifies the identity of the
material. For example, consider a solid body moving inside a fluid. One may designate the
solidity as the tracer field. Accordingly, the function C has a value of 1 for the solid and 0 for
the fluid. Note that the solidity does not change even if the solid body compacts or expands,
although the volume occupied by the body decreases or increases. Another example of a tracer
field is the color of a body. A black body remains black even if it is compacted or expanded,
implying that the concentration of the tracer does not change even if its volume changes. With
this definition of C, it is clear that Equation (1) does not, in general, represent a conservation
law, although it becomes one when the medium is incompressible. Therefore, C can specify any
scalar variable, such as density, concentration or temperature, in incompressible fluids.
Most conventional backward-time and forward-space difference techniques result in false
diffusion in solving Equation (1) [1]. This is because at each time step the material to be
advected is assumed to be uniformly distributed over the entire control volume, whereas in the
actual advective flow the material may occupy only a fraction of the control volume and does
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not overlap the material originally present in the downstream control volumes. SMM
suppresses false diffusion by adjusting the material distribution in a control volume at each
time step. The tracer field C is represented by a number of discrete rectangular boxes, one box
in each control volume. During a time step, the boxes move as rigid bodies within and across
the control volumes with the respective nodal velocities in a Lagrangian sense, and are
partitioned appropriately between the control volumes (Figure 1). At the end of the time step,
the resulting partitioned boxes in a given control volume are combined into a single
rectangular box. The x and y co-ordinates of the center of mass of the box (F,, F,) are
calculated by conserving the first moment of the partitioned boxes with respect to the node of
the control volume. The dimensions of the box (R,, R,) are determined through conserving the
second moment of the partitioned boxes with respect to the center of mass. The mean
concentration of the tracer distribution inside the control volume, C,,, the center of mass and
the dimensions of the combined box are determined by

0.5 0.5
Cn= J J C(x,y)dx dy (2
—0.5 —0.5
1 0.5 0.5
F.=— f J xC(x, y)dx dy (3)
C‘m —0.5J—-05

" dx | dx "

(1) G+1j+1) [
dy

,,,,,,, il |

P ) J— [
= dy

iy
G) ARk 1) l

Figure 1. Representation of the tracer field inside a control volume as a rectangular (blank rectangle)

box. The solid circle denotes the center of mass of the tracer box. The arrow denotes the velocity vector

of the tracer box. During a given time step, the box is advected downstream and appropriately
partitioned between the downstream control volumes (the patterned boxes).
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where x and y denote the distance of the material from the center of the control volume, and
all dimensions are normalized by the dimension of the control volume. They range from — 0.5
to 0.5 in both the x- and the y-direction.

As noted by Egan and Mahoney [1] an improvement can be made when the velocity field is
curved. The simplest way to find the displacement field « for a given time step Atz is to compute
it explicitly from the nodal velocities. However, this does not result in an accurate trajectory
path. An alternative procedure is to approximate the trajectory path by first extrapolating the
nodal velocity to ¢+ 3At, and then solving for « iteratively [7]

_, 1 1
o= V<x+2oz, t+2At>At (7N

where x is the position vector. Usually two or three iterations are sufficient to reach a
converged solution. A bilinear interpolation is accurate enough to calculate V(x + 1o, t+3A1)
[7]. The examples considered in this paper have analytical velocity fields and V(x + 1a, + 1A¢)
is calculated analytically.

SMM is a positive definite conservative method, and in pure translational flows is diffusion-
free and shape-preserving [6]. However, in rotational and deformational flows, the shape-
preserving property of the method deteriorates and a significant false diffusion occurs [8,9].
Moreover, a significant amount of mass can be accumulated at the stagnation points. Our
improved technique, called hereafter the ISMM, not only alleviates these shortcomings and
enhances the performance of SMM, but also enables us to investigate the advection of a tracer
field in compressible flows.

3. TREATMENT OF FALSE DIFFUSION

SMM does not preserve the tracer volume in rotational and\or shear solenoidal velocity fields.
Any artificial increase (decrease) in the tracer volume results in a decrease (increase) of the
concentration of the tracer in a control volume, and hence numerical diffusion (enhancement).
To illustrate this point, we consider a control volume initially containing two rectangular
distributions, A and B (Figure 2), and calculate R, and R, of the rectangular box that is to be
combined. In Figure 2(a), the y co-ordinates of the centers of A and B are the same but their
x co-ordinates differ. The volume of the combined box calculated from Equations (2)—(6) is
equal to the sum of the volumes of boxes A and B. Therefore, the volume is conserved and no
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Figure 2. Three possible configurations for two tracer boxes inside a given control volume. The left

column shows the constituent boxes A and B, and the right column shows the combined box. The solid

circles indicate the centers of mass of the tracer boxes. In (a) the volume of the combined box is equal

to the sum of volumes of boxes A and B. In (b) the volume of the combined box is larger than the sum

of volumes of A and B and in (¢) it is smaller. The hachured area indicates the overlapped part of the
two boxes.

numerical diffusion occurs in this case. In Figure 2(b), the co-ordinates of the centers of A and
B are different as well as their y dimensions. The mass of tracer inside A and B are 0.5 and
0.25 unit mass respectively (the mass of the tracer box is 1 when it fills the entire control
volume). The volume of the combined box calculated by the SMM is about 16.5% larger than
the volumes of A and B combined. This results in false diffusion. In Figure 2(c), A and B
overlap and SMM results in a volume for the combined box that is smaller than the volumes
of A and B by an amount equal to the overlap area. This leads to a false enhancement of the
tracer field. Overlapping of the boxes occurs in rotational and shear flow fields due to the fact
that SMM neglects cross derivatives of the velocity vector and does not allow the box to rotate
or undergo shear deformation.

Realizing the cause of the false diffusion and enhancement, we adjust the dimensions of the
combined box to preserve the total volume of the initial partitioned boxes (V) inside the
control volume. ¥ is calculated when the partitioning of the boxes between control volumes
is made. A scaling factor, s, is defined as the square root of the ratio between V,, and the
volume of the combined box,
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®)

For a uniform tracer concentration, ¥, = C,, and s is calculated using C,, to save CPU time.
The dimensions of the box are then adjusted as

R, =R./s, R, =R,./s )

If the adjusted dimensions of the box are greater than the dimensions of the containing control
volume, the adjusted dimensions are set equal to those of the control volume. To conserve the
tracer volume, the excess volume is transferred to the neighboring control volumes and the
combined boxes of these control volumes are corrected accordingly.

4. TREATMENT OF STAGNATION POINTS

In flow fields with symmetry lines leading to stagnation points, SMM often leads to very high
concentrations of tracer at the stagnation points, because the tracer boxes are assumed rigid.
Those tracer boxes that are located on a symmetry line only move along the line and
accumulate inside the stagnation control volume where the nodal velocity is zero. An
incompressible flow field in a “T” channel (Figure 3(a)) illustrates this point. The discretized
velocity in the vertical branch is upward and twice greater than the velocity in the horizontal
branches and velocity at node A is zero. SMM assumes that tracer boxes move with the
velocities of the grid nodes. As a result, the tracer boxes entering the control volume A
accumulate there. This is a serious problem, especially in coupled thermochemical problems
where a slightly incorrect tracer field can have a major effect on the dynamics of the system.

To correct this problem, we take into account the displacements between the faces and the
center of mass of a tracer box during its advection in a given time step. In a variable velocity
flow field, the faces move with their respective velocities, which could be different from the
velocity of the center of mass, resulting in deformation of the box. We construct a deformed
shape expected for the box at the end of the time step. Following SMM, this deformed shape
is then advected rigidly with the velocity of the center of mass within that time step. In other
words, the distance between a given box face and the center of mass of the box at the end of
a time step is calculated beforehand and the modified box is advected as a rigid body. Because
the velocity values are usually available at control volume faces, the deformation of the tracer
boxes relative to their centers of mass is determined by calculating how much a control volume
would ‘hypothetically’ deform. The volume of the tracer box is then proportionally modified
so that the ratio between the box volume and the volume of the ‘hypothetically’ deformed
control volume remains unchanged.

We illustrate the procedure by applying it to the advection of a constant tracer field in the
incompressible T channel mentioned before (Figure 3). The control volumes are square boxes
of width L, and the time step corresponds to the Courant number of 1. The initial tracer boxes
completely occupy the control volumes everywhere and their centers of mass and dimensions
coincide with the grid nodes and the control volume dimensions respectively. In the control
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Figure 3. A T channel flow. (a) Numbers and arrows indicate nodal and interface velocities. (b) The
shaded areas 1, 2 and 3 denote the redistribution of the tracer field initially in control volume A, on the
basis of velocity gradients across the control volume. The shaded area 4 shows the redistributed tracer
field in control volume B. (c) The shaded areas 6 and 8 denote the expanded part of tracer boxes initially
in control volumes C and D respectively. The shaded areas 5 and 7 are the remaining portions of the
tracer boxes, which were originally in C and D respectively. (d) The tracer distribution after being
advected for one time step. At the end of the time step, the sum of the initial volumes and mass of the
tracer in control volumes A, B, C and D are conserved.

volume A, the relative velocities suggest that the bottom face will displace by 0.5L towards
node A by the end of the time step. Therefore, we shift the position of the bottom face towards
node A by 0.5L. There is no relative velocity between the top face and the nodal point, and
no adjustment is required for this face. In the horizontal direction, the right-hand face of the
control volume A will have a displacement of 0.25L to the right and the left-hand will have
0.25L to the left during the time step. We expand the original tracer box in the control volume
A by 0.25L at each side to account for this displacement. The added portions are placed inside
control volumes C and D (portions 2 and 3 in Figure 3(b) respectively), and treated as separate
boxes whose velocities are equal to the velocity of control volume A.

In control volume B, the displacement of the top face relative to node B will be 0.5L toward
the node at the end of the time step. We shift the position of the top face by 0.5L toward the
node. Shaded area 4 denotes the modified tracer distribution inside B. The relative displace-
ment between the bottom face and node B is 0 and no adjustment is required for that face.
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In control volume C, the displacement of the right-hand face relative to node C at the end
of the time step will be 0.25L toward the right, and the shaded area 6 (Figure 3(c)) denotes the
shift we make. No adjustment is required for the left-hand face because its velocity is identical
to that of the node. Finally, an analogous shift is made in the control volume D (shaded area
8).

Once the tracer boxes are adjusted, they are advected over the time step as rigid bodies, with
the nodal velocity of their respective control volumes. Consequently, the tracer distribution in
Figure 3(b) and (c) is evolved to that in Figure 3(d). Note that the total volume of the shaded
areas in Figure 3(b) and (c) is equal to the initial tracer volume in the four control volumes,
hence satisfying the condition of incompressibility. The tracer field is advected correctly, its
volume is conserved and there is no tracer accumulation inside the stagnant control volume A.

A further shortcoming of SMM is its inability to handle a compressible flow. This difficulty
arises because the rectangular distributions are treated as rigid bodies with fixed volumes,
irrespective of the fact that the actual fluid material undergoes volume changes. Consequently,
the tracer field will represent an inaccurate distribution of the material type that it has been
assigned to. The improvement described above automatically increases or decreases the total
volume of the rectangulars depending on whether the fluid is expanding or condensing. To
demonstrate this point, we again use the T channel example, but with the magnitude of
velocity in the horizontal branches equal to that in the vertical branch (Figure 4(a)), the fluid
is now expanding. Figure 4(b) and (c) shows the adjustments before the tracer field is advected
in the time step. Figure 4(d) shows the tracer distribution after being advected. The total
volume of tracer has increased by one control volume in order to accommodate the expansion
of the fluid medium.

5. EXAMPLES

In this section we present examples that compare the accuracy of the proposed ISMM
compared with those of SMM and the Eulerian based monotonic second order upwind
(MSOU) technique of Sweby [10]. Tamamidis and Assanis [11] compared the performance of
MSOU with other high-order accuracy schemes, with and without flux limiters, and concluded
that MSOU is one of the most accurate schemes in problems involving advection of sharp
discontinuities and is nearly second-order accurate. In the MSOU method adopted here, a
fourth-order Runge—Kutta method is used for discretization of the time derivative term in
Equation (1). In all examples, a uniform grid of 101 x 101 nodes on a computational domain
of 0<x<1and 0<y <1 and a maximum Courant number of 0.5 is used.

5.1. Example 1: the revolving slotted cylinder

The first example is designed to compare the performance of ISMM with that of MSOU and
SMM in eliminating false diffusion and enhancement. The evolution of the shape of a
revolving slotted cylinder tracer field (Figure 5(a)) is studied. We choose the slotted cylinder
distribution because of its sharp discontinuities and small regions of smoothness [12]. The
cylinder has a radius R, = 15/, where 71 =0.01 is the uniform grid spacing, and a height of
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Figure 4. Compressible flow in a T channel. (a) The fluid velocity field. (b) Redistribution of the tracer

box in A (shaded areas 1, 2 and 3) and B (shaded area 4) based on velocity gradients. (c) Redistribution

of the tracer box in C (areas 5 and 6) and D (areas 7 and 8). (d) The tracer field after advection. The
sum of the volumes of the initial tracer boxes has increased to accommodate the expansion.

H_=1. The slot has a width of 6/ and a depth of 224. The angular velocity of the cylinder is
180°s 1.

Figure 5 shows the time evolution of the shape of the cylinder calculated by MSOU, SMM
and ISMM. After ten revolutions, MSOU (Figure 5(b)—(d)) still preserves the initial height of
the cylinder, but the slot is gradually filled and the sharpness of the edges of the cylinder is
degraded. The results of SMM (Figure 5(e)—(g)) show that after ten revolutions a significant
amount of false diffusion and enhancement occurs and the slot is substantially widened. In the
ISMM model (Figure 5(h)—(j)), the structure of the slot is distorted to some extent but the
sharp boundaries of the cylinder are resolved over a maximum of two grid nodes.

For a quantitative comparison, the value of # = [C? dv/[Cj dv, the maximum value of the
tracer field (C,,,,) and an L, error norm are calculated and listed in Table I. C and C, are
concentration at a given time and initial concentration respectively. L, is defined as

1
L1:};|C—Co| (10)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 959-977



968

A. GHODS, F. SOBOUTI AND J. ARKANI-HAMED

!

hm” ”H

..‘rh

m|’r i

| ‘ 'l\f

Figure 5. Deformation of a slotted cylinder. (a) The initial cylinder; shape of the cylinder obtained by
MSOU after (b) one, (c) five and (d) ten revolutions; by SMM after (e) one, (f) five and (g) ten

revolutions; and by ISMM after (h) one, (i) five and (j) ten revolutions.
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Table I. Revolving slotted cylinder.

Number of MSOU SMM ISMM
revolutions
}7 Cmax Ll ’7 Cmax Ll ’7 Cmax Ll
1 083 1.0 1.4x102 0.89 1.14 1.3x1072 096 1.03 4.2x1073
2 0.83 1.0 1.6x1072 0.87 1.16 1.6 x102 095 1.04 5.1x1073
3 083 1.0 1.6x102 0.86 1.18 1.8x1072 096 1.03 6.0x103
4 0.83 1.0 1.7x1072 0.84 1.19 1.9x102 096 1.04 6.8x1073
5 083 1.0 1.7x1072 0.83 1.19 2.0x1072 096 1.04 7.6x1073
6 0.83 1.0 1.8x1072 0.83 1.20 2.1x10°2 095 1.04 8.4x10~3
7 083 1.0 1.8x102 0.82 1.21 22x1072 095 1.04 9.1x10°3
8 0.83 1.0 1.9x1072 0.81 1.22 23x10°2 096 1.04 9.8x 103
9 083 1.0 1.9x102 0.81 1.22 23 %1072 096 1.04 1.0x 102
10 0.83 1.0 2.0x1072 0.80 1.22 24 %1072 096 1.04 1.1x10°2

where K is the total number of grid points. A comparison of these figures shows that for
MSOU and ISMM, the value of # remains constant with the increase of integration time,
suggesting that the amount of false diffusion does not change in time for these two methods.
Also, MSOU and ISMM preserve the initial height of the cylinder. In contrast, SMM gives the
largest diffusion and the amount of diffusion increases as the number of revolutions increases.
ISMM has the best performance because after ten revolutions, L, of ISMM (1.1 x 10 ~2) is still
better than those of MSOU (1.4 x 10=2) and SMM (1.3 x 10~2) and its # is very close to
unity.

5.2. Example 2: Smolarkiewicz deformational flow

The second example examines the performance of ISMM for the stagnation point problem, by
considering the advection of a conic tracer distribution in an incompressible steady state
Smolarkiewicz deformational flow field [13]. The x and y components of the velocity field are
defined by

V.= —sin(4nx) sin(4ny), V, = —cos(4rx) cos(4my) (11)
specifying symmetrical counter-rotating vortices (Figure 6(a)) with symmetry lines in both
directions and with stagnation points. The initial tracer field is a cone of radius 0.15 and height
1.0, located at the center. Figure 6(b) and (c) shows the deformed cone determined by SMM
at times =0.314s and r=0.628 s respectively. A considerable amount of tracer material
accumulates at the stagnation point at the top of the middle counter-rotating cells. The
concentration of the tracer at point A is enhanced by a factor of 12, making the solution
physically unacceptable. Figure 6(d) and (e) shows the results at the same times for ISMM.
The tracer mass does not accumulate at the stagnation point, rather circulates more freely
inside the convecting cells, as it is evident from the greater continuity and extension of the
contour lines compared to those in the SMM plots. The maximum tracer concentration in
Figure 6(d) and (e) is 1.
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Figure 6. (a) Velocity field for Smolarkiewicz flow and the initial tracer field. The tracer field calculated
by SMM at time (b) 1 =0.314s and (c) 1 =0.628 s; and by ISMM at (d) t=0.314s and (e) 1 =0.628 s.
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5.3. Example 3: the twisting—untwisting experiment

In the third example, we study the advection of an initially flat layer extending from left to
right (Figure 7(a)), in an incompressible flow field that alternatively rotates for 1.57 s in
opposite directions, called hereafter the twisting—untwisting experiment. The velocity field is
given by

V.= cos(n(x — 0.5)) sin(z(y — 0.5)),

V,= —sin(n(x —0.5)) cos(n(y — 0.5)) (12)
The sign of the velocity components changes during the untwisting part of the experiment. The
initial tracer field is a layer of width 0.2 with a uniform concentration of unity. We compare
the results from ISMM with those of SMM and MSOU. Figure 7 shows the tracer field at
times ¢t =1.57 s and ¢ = 3.14 s produced by one twist and then untwist respectively. In SMM
and ISMM, the local maxima occur at the two ends of the deforming body where stretching
and deformation is severe. The MSOU has the maximum false diffusion near the boundaries.
In the SMM model (Figure 7(e)), the tracer field increases from 1 to a maximum of 1.8,
whereas in ISMM (Figure 7(g)), the maximum value of the tracer is 1.03, which is very close
to the initial value. Comparison of Figure 7(c), (e) and (g) clearly demonstrates that ISMM has
a superior performance over MSOU and SMM in preserving the initial tracer field.

Figure 8 shows the profiles of the tracer field along the line x = 0.04 for the three methods
after 0, 6, 12 and 18 twists and untwists. The MSOU solution suffers from a serious false
diffusion, which increases as time passes. The numerical error for SMM is modest, but the
shape-preserving quality of the method has noticeably diminished. ISMM produces the best
results with a minimal false diffusion and maximum shape-preserving quality.

5.4. Example 4: compressible flow

Our final example shows how ISMM handles the problem of the transport of a color function
in a compressible flow field. An initially square box of tracer field is advected in a flow field
defined by

V. = cos(2zr(x)) sin(z(y — 0.5)),

V,= —sin(2z(x)) cos(n(y — 0.5)) (13)
The flow field and the regions of compression and expansion are shown in Figure 9(a). The
tracer field has a width of 0.15 and is placed in the top expansional region. Figure 9(c) and (d)
shows the tracer field produced by MSOU at times ¢ = 1.57 and 6.28 s respectively, and Figure
9(e) and (f) shows those for ISMM. The tracer fields of ISMM are considerably less diffused
than those of MSOU. Figure 9(b) shows the time evolution of the total volume of the tracer
upon entering regions of expansion and compression. As time passes, the total volume reaches
a statistically steady state value in the ISMM solution, which is less than the initial value. This
is because the tracer field was initially in the expansional region, but later spreads over both
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Figure 7. (a) The velocity field and the initial tracer distribution for the twisting—untwisting experiment.

After 1.57 s of counterclockwise rotation the flow field is reversed. The tracer field calculated by MSOU

at time (b) t=1.57 s and (¢) t=3.14s; by SMM at (d) t=1.57 s and (e) t = 3.14 s; and by ISMM at (f)
t=157s and (g) t=3.14s.
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Figure 8. Profiles of tracer field along the line x =0.04 in the twisting—untwisting experiment. The
profiles show tracer concentration after 0, 6, 12, and 18 flow reversals for (a) MSOU, (b) SMM and (c)
ISMM.
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Figure 9. (a) Compressible velocity field with compressional (dark) and expansional (light) regions. The

square box represents the initial tracer field. (b) Time evolution for the total tracer volume for ISMM and

MSOU. The tracer field calculated by MSOU at time (c) t=1.57 s and (d) = 6.26s; and by ISMM at
time (e) t=1.57s and (f) t=6.26s.
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the compressional and expansional regions. However, the false diffusion in MSOU results in
an additional tracer volume, and the final tracer volume in MSOU approaches to a higher
value than ISMM.

6. COMPUTATIONAL EFFICIENCY

In this section the computational efficiency of ISMM is compared with those of SMM and
MSOU, by a spatial grid-refinement of the slotted cylinder and twisting—untwisting experi-
ments. Following Leonard et al. [14], the relative cost and accuracy of each method are shown
in a log—log plot of the mean square error (L,) versus the CPU time. L, is defined as

1
L2:}; (C— Co)2 (14)

Grid resolutions of 51 x 51, 101 x 101, 151 x 151 and 201 x 201 nodes are used. An additional
experiment with a grid of 301 x 301 nodes is done for SMM and MSOU.

Figure 10(a) compares the computational efficiency of the three methods for the slotted
cylinder. The cylinder completes one revolution in all experiments. For all resolutions, ISMM
has the least amount of error. It is also faster than MSOU at low resolutions but becomes
slower at higher resolutions. To obtain an error value of 1.33 x 103, ISMM takes only
34.51 s on a grid of 101 x 101 nodes, while MSOU and SMM require about 16 min on a grid
of 301 x 301 nodes, about 27 times more expensive than ISMM.

In Figure 10(b) the results for the twisting—untwisting experiment are displayed. Again, for
a given resolution the value of error for ISMM is at least an order of magnitude less than that
of both SMM and MSOU. For example, using a very fine grid of 401 x 401 nodes, MSOU
gives an error that is four times higher than that obtained by ISMM on a grid of 51 x 51
nodes.

A comparison of Figure 10(a) and (b) reveals the inefficiency of SMM and MSOU
compared with ISMM in the deformational flow. While in the slotted cylinder case SMM and
MSOU are able to achieve the level of error of ISMM with higher resolutions and larger CPU
times, in the twisting—untwisting experiment, ISMM 1is superior to the other methods for all
resolutions.

7. CONCLUSIONS

Our primary goal was to extend the attractive features of the second moment method (SMM)
to the study of strongly rotational and\or deformational flow fields. We presented two
improvements to SMM in order to suppress the false diffusion\enhancement associated with
the non-translational flow fields, and the mass accumulation in the stagnation points. It was
shown that diffusion and\or enhancement are produced because SMM does not conserve
volume. In the first improvement, the dimensions of a combined box were adjusted to conserve
volume. In the second improvement, the assumption of a rigid tracer box was partially relaxed
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Figure 10. Computational efficiency diagrams for MSOU, SMM and ISMM with grid resolutions of (1)
51 x 51, (2) 101 x 101, (3) 151 x 151, (4) 201 x 201, (5) 301 x 301 and (6) 401 x 401 nodes. (a) Results for
the slotted cylinder test and (b) for the twisting—untwisting test.
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by considering normal gradients of velocity components across a given control volume. This
improvement not only resolved the problem of stagnation points, but also enabled ISMM to
solve a tracer field in a compressible fluid flow.

Examples showing solid body rotation, flows with stagnation points, and strong deforma-
tional flow fields were presented to illustrate the effectiveness of our improvements. It was
shown that ISMM has a high quality of shape-preserving in rotational flow fields. For a given
accuracy, it is far more efficient than SMM and MSOU. The ISMM technique presented here
is valid for Courant numbers as high as 1 and for equal grid spacings in each direction. It
requires modifications to apply for a non-uniform grid spacing. Also, the technique is more
storage demanding than the Eulerian and semi-Lagrangian methods. This shortcoming is
certainly overwhelmed by its advantages.
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