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Abstract We have calculated empirical attenuation curves for the local magnitude
scale (ML) in the Alborz region of northern Iran. The maximum trace amplitudes de-
rived from synthetic Wood–Anderson seismograms of 1290 records of 59 events in the
distance range of 8.5–550 km recorded by the short-period Iranian Seismic Telemetry
Network (ISTN) were inverted for the attenuation curve, magnitudes, and station cor-
rections. The earthquakes ranged from ML3:25 to 5.65 and were recorded at 26 sta-
tions in the region. We used both nonparametric and parametric least-squares methods
for inversion. The resulting parametric equation is logA0 � �1:1725 log�R� �
0:0021R � 0:4450. The two methods yielded very similar results and are very close
to Richter’s original attenuation curve for southern California. The station corrections
vary between �0:42 and �0:47 suggesting that local site effects may have a strong
influence on the amplitudes.

Introduction

The Alborz range of northern Iran (Fig. 1) is a zone of
intense active deformation and seismicity. It is part of the
Arabia–Eurasia collision zone where deformation is charac-
terized by partitioning of strain into range-parallel left-lateral
strike-slip faulting and thrust faults (Jackson et al., 2002; Al-
len et al., 2003). Seismicity in the Alborz, like many other
regions of Iran, is mostly limited to the upper 20 km of the
crust. The Alborz is the most heavily populated region of
Iran, including Tehran with a population of over 10 million.
The region is affected by numerous active faults, some of
them with great seismic potential and documented historical
seismicity (Ambraseys and Melville, 1982; Berberian and
Yeats, 1999). As such, the Alborz region is a prime candidate
for seismic hazard evaluation studies.

The ML is commonly used in engineering because it is
determined within the frequency range (1–5 Hz) of interest
to most such applications. For any comprehensive seismic
hazard analysis one needs a calibrated magnitude relation-
ship as well as an earthquake catalog for the study region.
It is a well-known fact that regional geology has great in-
fluence on magnitude relations. Therefore, for each seismic
region a specific magnitude relation has to be developed.
Currently, seismicity in the Alborz is being monitored by
two permanent networks: the short-period Iranian Seismic
Telemetry Network (ISTN) and the broadband Iranian Na-
tional Seismic Network (INSN). Neither network uses mag-
nitude relationships calibrated specifically for Iran. The ISTN
uses the Nuttli (1973) magnitude relationship developed for
eastern North America. The INSN uses the Hutton and Boore
(1987)ML scale calibrated for southern California. Develop-
ing a ML scale specific to the Alborz region can, therefore,
provide a more solid foundation for future seismic hazard

studies in Tehran and other centers of population in north-
ern Iran.

Shoja-Taheri et al. (2007) derived an ML scale for the
Iranian plateau using the strong-motion data recorded by the
National Strong-Motion Network of Iran (NSMNI). They di-
vided their study region into three segments, and the Alborz
region fell in their northern segment. TheirML relationship is
limited to distances smaller than 200 km and is based on
rather large events (M >4:5). Therefore, their ray coverage
was nonuniform and in some places not dense enough. The
stations of NSMNI are mostly located on soft platforms or
inside buildings. Therefore, their amplitudes may be signif-
icantly amplified by soft layers beneath them or by soil–
structure interactions. For this reason, magnitude scales
calibrated using strong-motion networks might differ to
some extent from that derived from seismic networks that
are normally stationed on hard bedrock with much smaller
site amplification.

The availability of a relatively large volume of short-
period data from northern Iran motivated us to calibrate a
new ML scale for the Alborz region. In the following, we
first introduce the ISTN and then explain the procedure for
calculating the ML scale. We also report magnitude correc-
tions ISTN stations in the study area.

Data

The analysis presented in this article is based on the data
collected by the ISTN (see the Data and Resources section).
Founded in 1995 by the Institute of Geophysics of the Uni-
versity of Tehran, the ISTN is the first modern seismic net-
work of Iran. The network is equipped with three-component
short-period SS-1 seismometers (made by Kinemetrics) with
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eigenfrequency of 1 Hz and 24 or 16 bit digitizers with a
sampling rate of 50 sample=sec. The network is made up of
several provincial subnetworks. Ghods and Sobouti (2005)
give a detailed description of the hardware and the network
setup of ISTN. Our study area encompasses the Alborz range
and the plain regions to the south of it that are part of the
northern margins of the central Iranian block. Three of the
subnetworks, Mazandaran, Semnan, and Tehran, cover this
area (see Fig. 1). In addition, we used the data of the Tabriz
subnetwork to the northwest of the region. The Tabriz net-
work is one of the two oldest subnetworks (along with the
Tehran network) and has accumulated a fairly large amount
of data in the last 10 yr. The four subnetworks have a total
of 26 stations. The average interstation distance inside the
Alborz region (that is, excluding the Tabriz stations) is about
50 km.

The data used in this study are 1290 records of 59 earth-
quakes that occurred in the period 1996–2007 (Fig. 1 and
Table 1). In order to increase the location accuracy of the
events, we first combined all the data from all the sub-
networks and relocated the events. For those events that lie
closer to the corners of the study area, we used phase read-
ings from neighboring subnetworks to the south. The mag-
nitudes of the events range from 3.25 to 5.73 as calculated
from Hutton and Boore’s (1987) ML relationship (see Ta-
ble 1). We chose events of M <6 to avoid the problem of
saturation of the ML scale for large magnitudes (Bormann
et al., 2002). Figure 2 shows the distribution of magnitudes
versus hypocentral distances. To insure good signal-to-noise
ratios for amplitude measurements, we did not use events of
M <3:25. The events were selected to provide relatively
homogenous ray coverage inside the study area. The epicen-
tral location error for the events is less than 5 km. The hy-
pocentral depths have poorer accuracy. Most are around
15 km, which is in agreement with the pattern of seismicity
in the region (Bondar et al., 2004). The Alborz is a zone of

compressional deformation, and seismicity is mostly limited
to the upper 20 km of the crust.

Determination of the Attenuation Curve

Richter’s (1935, 1958) ML formula first developed for
southern California is defined as

ML � logA�R� � logA0�R�; (1)

where A�R� is the maximum amplitude (in millimeters) at a
hypocentral distance of R (in kilometers), and logA0�R� is
the empirically derived attenuation curve. The attenuation
curve depends on anelasticity, scattering, and geometrical
spreading along the event-station path. One important task
is to obtain a mathematical representation of logA0�R�. This
can be accomplished by fitting a parametric or nonparametric
attenuation function to the observed amplitudes. The para-
metric method assumes a specific functional dependence
of logA0�R� on R and tries to fit that function to the data.
The nonparametric method assumes no specific form of
logA0�R�, and the shape of the attenuation curve is deter-
mined by the data. Bakun and Joyner (1984) and Hutton
and Boore (1987) adopted a parametric least-squares fitting
technique for central and southern California, respectively,
and since then many others have followed their methodol-
ogy. The parametric expression as given by Bakun and Joy-
ner (1984) has the following form:

logAij � �n logRij �
Xstations

l�1

Slδlj �
Xevents

k�1

Ckδik; (2)

where Aij is the amplitude of event i recorded at station j, Rij

is the event-station hypocentral distance, n is the geometrical
spreading coefficient (A ∼ 1=Rn), K is the attenuation coef-
ficient (A ∼ e� ln 10KR), Sl are the station correction terms
constrained to sum to zero, δ is the Kronecker delta function,
and Ck are related to earthquake magnitude and are con-
strained by Richter’s criterion that a zero magnitude earth-
quake should have an amplitude of 0.001 mm at a 100 km
distance from the epicenter.

Savage and Anderson (1995) introduced a nonpara-
metric least-squares inversion method, which has been used
by others (e.g., Kim, 1998). In this method, the amplitudes
recorded at arbitrary distances are linearly interpolated to
yield values for the attenuation curve at some fixed distances.
The number of the fixed points for which logA0 is calculated
depends on the density of amplitude readings over the dis-
tance range considered. Unlike the parametric method, the
nonparametric method does not impose any a priori assump-
tion of the shape of the attenuation curve on the data and has
the potential to detect hinges in the attenuation curve that are
caused by structural boundaries such as the Moho. Savage
and Anderson (1995) rewrote equation (1) in the following
matrix form:
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Figure 1. Map of the study area. The solid black lines show the
traces of the active faults in the region; triangles are the stations of
ISTN; circles are the epicenters of the events used in this study; and
gray lines are the surface trace of the event-station paths.
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Table 1
The Catalog of the Earthquakes Used in This Study

Date (yyyy/mm/dd) Time (UTC) Latitude Longitude Depth (km) ML M�
L

1996/06/25 14:11 37.427 48.509 15.0 3.74 3.81
1996/11/18 14:02 36.123 50.297 22.0 3.61 3.63
1997/03/18 05:35 35.782 52.035 10.0 3.69 3.71
1997/04/25 18:11 35.435 52.330 15.0 3.78 3.79
1997/10/22 19:29 36.433 50.292 15.0 3.63 3.69
1998/02/24 12:27 36.842 49.550 14.7 3.60 3.66
1998/04/20 02:49 36.765 49.335 16.8 3.83 3.89
1998/10/09 20:13 36.933 48.791 16.2 3.55 3.62
1998/12/03 21:07 36.128 50.961 10.0 3.93 4.00
1999/01/27 09:55 36.935 48.969 17.4 3.83 3.89
1999/07/12 03:43 35.601 51.938 12.9 3.49 3.48
1999/07/14 05:12 37.732 47.712 11.0 3.81 3.84
1999/07/21 03:58 36.868 49.085 15.0 3.73 3.79
1999/09/05 03:57 35.800 52.121 10.0 3.79 3.80
2000/02/28 18:43 37.081 48.624 16.7 3.60 3.67
2000/08/16 12:52 36.802 54.291 15.0 5.14 5.18
2000/09/05 15:01 37.417 48.475 15.0 3.84 3.92
2001/02/16 01:43 35.320 52.144 17.2 3.73 3.72
2001/02/16 10:45 35.891 52.167 15.0 3.34 3.33
2001/03/04 11:45 35.233 53.388 15.0 4.38 4.39
2001/06/24 07:05 35.879 52.240 17.4 3.64 3.64
2001/07/24 20:45 34.460 50.682 15.0 3.74 3.79
2001/09/12 04:38 34.454 51.414 15.0 3.71 3.75
2001/11/17 21:19 35.885 53.257 15.0 3.47 3.48
2002/02/12 05:27 35.668 52.117 17.1 3.68 3.68
2002/03/09 18:28 35.993 52.911 15.0 3.74 3.75
2002/05/21 10:48 36.381 51.701 17.0 3.96 3.98
2002/06/25 06:51 35.729 49.087 15.0 3.81 3.88
2002/06/26 18:51 35.736 48.869 15.0 3.67 3.73
2002/07/ 03 19:24 35.714 48.934 16.2 4.00 4.10
2002/07/07 18:50 35.991 53.168 16.3 3.79 3.81
2002/07/20 15:22 35.749 49.024 15.0 3.76 3.84
2002/07/23 17:59 35.702 49.071 15.0 3.74 3.81
2002/08/04 09:40 36.327 51.830 26.2 3.69 3.70
2002/08/23 00:49 35.871 49.108 15.0 3.90 3.97
2002/09/17 02:02 34.478 51.248 15.0 3.79 3.81
2002/12/15 16:34 35.686 48.962 15.8 3.62 3.69
2003/02/24 15:48 36.086 53.747 15.0 3.75 3.76
2003/03/14 05:04 35.664 52.076 15.0 3.56 3.56
2003/06/22 03:39 35.526 52.605 16.4 4.23 4.26
2003/06/22 22:03 35.498 52.650 15.0 3.59 3.61
2003/09/30 15:32 36.340 52.989 15.0 3.88 3.92
2003/10/13 22:42 36.822 49.416 15.0 3.61 3.68
2004/03/06 20:00 36.780 49.053 15.0 3.54 3.61
2004/05/28 17:34 36.469 51.35 16.0 3.83 3.89
2004/05/29 04:12 36.392 51.65 31.3 3.65 3.71
2004/05/31 22:05 36.467 51.395 24.1 3.55 3.57
2004/06/07 04:01 36.488 51.461 16.4 3.98 4.03
2004/07/23 12:21 36.663 48.987 15.0 3.93 4.00
2005/04/14 08:44 36.687 49.283 14.7 3.73 3.79
2006/01/05 13:01 35.703 48.864 15.0 3.66 3.74
2006/02/17 17:46 36.335 54.524 15.0 3.25 3.33
2006/02/22 23:19 36.057 50.253 15.0 4.02 4.07
2006/06/28 14:11 35.807 48.922 15.0 3.83 3.89
2006/11/02 00:58 36.84 54.333 16.1 3.49 3.56
2006/11/20 08:27 36.382 54.1 15.0 3.64 3.65
2007/02/09 00:14 36.997 54.082 15.0 4.06 4.09
2007/06/18 14:29 34.506 50.855 24.4 5.73 5.80
2007/09/10 04:44 36.695 54.527 15.0 3.55 3.59

The sixth column lists the Hutton and Boore magnitudes. The last column shows
magnitudes calculated from our nonparametric method.
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ai � log10 A0�Ri� � bjMj � ckSk � log10 Ajk�R�: (3)

Here, R is event-station distance, the indices j and k, respec-
tively, refer to events and stations, Mj is the magnitude of
event j, Sk is the correction term for station k, Ajk�R� is
the amplitude reading for event j at station k, and Ri are
the fixed distances with spacing ΔR � Ri�1 � Ri such that
Ri < R < Ri�1. Coefficients ai, bj, and ck are weighting fac-
tors; ai � �Ri�1 � R�=�Ri�l � Ri�, ai�1 � 1 � ai, and all
other a � 0 for event j, bj � 1, and all other b � 0 for sta-
tion k, ck � 1, and all other c � 0. This method uses linear
interpolation of the recorded amplitudes at arbitrary dis-
tances to determine the attenuation curve at fixed points.
Equation (3) is solved for magnitude, attenuation curve,
and station corrections.

In this work we used both the nonparametric method of
Savage and Anderson (1995) and the parametric method of
Bakun and Joyner (1984) to determine the empirical attenua-
tion curve in the Alborz region. We calculated synthetic W-A
seismograms by removing the instrument response of each
record and convolving the resulting signal with the response
of the standard W-A torsion seismograph. We assumed a
static magnification of 2080 for the W-A instrument (as
shown by Uhrhammer and Collins [1990], the W-A instru-
ment has a magnification of 2080 and not 2800 as often
assumed). The maximum zero-to-peak amplitude was then
measured on both horizontal synthetic seismograms. Each
component was used separately. This is the procedure used
by many others (e.g., Bakun et al., 1978; Kanamori and Jen-
nings, 1978; Uhrhammer and Collins, 1990; Kanamori et al.,
1993; Savage and Anderson, 1995). We first discuss the re-
sults obtained by the nonparametric method in detail and
then compare them with that of the parametric method.

Results of the Nonparametric Method

As can be seen from Figure 2, the number of amplitude
readings decrease as the distance grows. We used a smaller

spacing of ΔR � 40 km for distances shorter than 480 km
and a larger spacing of 70 km for distances between 480 and
550 km. Savage and Anderson (1995) show that calculating
the station corrections directly from the inversion or later by
averaging the residuals, give very similar results. For this rea-
son and to avoid numerical instabilities, we chose to calcu-
late the station corrections by averaging after the logA0 and
the magnitudes were obtained. Therefore, we set c in equa-
tion (3) to zero. In order to make the inversion process stable,
we solved equation (3) using an iterative method. We chose
our initial solution vector to be one obtained from Hutton
and Boore’s (1987) relationship. Many workers (e.g., Baum-
bach et al., 2003) use a direct method to solve equation (3)
but constrain the solution to have a small second derivative
of logA0.

Figure 3 shows the attenuation curve derived from the
nonparametric method at two spacings of ΔR � 25 km
and ΔR � 40 km without station correction. On the curves
we imposed Richter’s constraint that logA0 � �3 at R �
100 km. Both curves show a general decay with distance
with no profound deviations from the overall trend. The lack
of any obvious and significant detail suggests that the crustal
structure and geological variations have minimum effect on
the shape of the attenuation curve. This does not mean that
there is no amplification due to late arriving phases (Burger
et al., 1987). The resolution of the attenuation curve (40 km
and less) may not allow us to detect amplification of ampli-
tudes that are normally observed with small spacing inter-
vals. ΔR � 40 km gives a somewhat smoother variation
consistent with the conclusion reached by Savage and An-
derson (1995) that larger spacings give smoother curves.
In our data, average interstation distance is 50 km, and
the bulk of the data has event-station distances between

Figure 2. Magnitude versus distance for the selected events in
this study.

Figure 3. Comparison of attenuation curves calculated in this
study. Triangles are nonparametric curve withΔR � 40 km; circles
are nonparametric curve withΔR � 25 km; solid line is curve fitted
to nonparametric result with ΔR � 40 km; dashed line is para-
metric curve; stars are curve obtained by Shoja-Taheri et al. (2007);
dash-dottted line is Hutton and Boore’s (1987) curve for southern
California; and squares are Richter’s (1958) curve.
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50 and 350 km. Therefore, it should not be surprising that a
spacing of 40 km gives a smoother curve. We later show that
ΔR � 40 km is the optimum model among all models
tested. Figure 3 also shows Richter’s (1958) original attenua-
tion curve as well as that of Hutton and Boore (1987) for
southern California. It can be seen that the difference be-
tween our curve and Richter’s curve is very small over the
entire hypocentral interval and never exceeds 0.25 unit of
magnitude. For R < 50 km, our curve gives smaller logA0

values than Richter’s curve. Between R � 40 and R �
350 km, the two curves are very close to each other, and
beyond R � 350 km our curve gives slightly larger logA0

values. Comparing the results with Hutton and Boore’s
(1987) parametric curve, one would have difficulty choosing
between the Richter and Hutton and Boore curves, as both
are very close to our curve. For R < 250 km, there is very
close agreement between our curve and that of Hutton and
Boore. At R > 250 km, Hutton and Boore’s curve gives
larger values by up to 0.25 units.

For a given event, theML is independently calculated for
each recording station. The ML for the event is then deter-
mined as the arithmetic mean of the ML of all stations. The
residual between the mean magnitude of earthquake i, ~Mi,
and the magnitude calculated for station j, Mij, is

res�ML�ij � ~Mi �Mij: (4)

Figure 4 shows the residuals and their mean values for
theΔR � 40 km curve. The mean values were calculated by
averaging the residuals in 40 km distance intervals. The re-
siduals and their mean values have a uniform distribution
with distance and follow the zero baseline very closely. This
confirms that our attenuation curve can successfully model
the relationship between attenuation and hypocentral dis-
tance in the region. Figure 5a shows residuals versus mag-
nitude. There is no discernible trend in the variations of the
residuals with magnitude, and thus, there is no dependency
on magnitude. Figure 6 shows the residuals and their mean
for the Alborz region as calculated from Hutton and Boore’s
(1987) formula. From the slope of the best-fitting straight
lines, it can be seen that Hutton and Boore’s formula gives
somewhat larger residues for magnitude estimates.

In the absence of any kinks in the nonparametric curve
obtained here, we can closely fit the following curve to the
nonparametric result for ΔR � 40 km:

logA0 � �1:0570 log�R� � 0:0023R � 0:6556: (5)

This curve has the same form as the parametric curve fitting.
One reason for such a curve fitting would be to provide a
seismic network a formula for magnitude determination.
Equation (5) yields n � 1:0570 andK � 0:0023. In Figure 3,
the curve obtained by equation (5) is shown and compared
with other results.

To estimate the uncertainties in the calculated n and
K parameters, we performed 100 repeated inversions started

from bootstrap samples each with 50% of the entire data cho-
sen in random fashion. The bootstrap mean and standard de-
viation values for n are 1.0661 and �0:0948, respectively,
and these values for K are 0.0022 and �0:00002, respec-
tively. The outcome of the bootstrap tests shows that our in-
version procedure is robust with respect to the data. We also
tested the sensitivity of the results to the initial assumed so-
lution vector by selecting initial vectors that were signifi-

Figure 4. (a) Magnitude residuals obtained from the attenuation
curve of this study as a function of hypocentral distance. The line is
a linear curve fitted to the data. (b) Mean values (circles) and stan-
dard deviation (bars) of the magnitude residuals versus distance.

Figure 5. Magnitude residuals as a function of magnitudes:
(a) results for nonparametric method and (b) results for parametric
method.
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cantly different (50%–100%) from the Hutton and Boore for-
mula. Perturbation of the initial values only increased the
number of iterations; the results were very stable and con-
verged to the same solution. We also checked the sensitivity
of the solution to the assumed spacing,ΔR. For eachΔR we
calculated a best-fitting curve like that in equation (5). Table 2
shows the coefficients of equation (5) for different spacing
intervals. The mean and standard deviation of magnitude

residuals for each model are shown and compared with Hut-
ton and Boore’s formula. The standard deviation differs by
about 1% among the models with ΔR � 40 having the low-
est value.

We determined a correction term for each recording sta-
tion by averaging all residuals for that station. Table 3 shows
the station corrections. The number of records and standard
deviation of magnitude residuals for each station are re-
ported. Station corrections vary between �0:42 to �0:47
among the 26 stations. A range of almost 0.9 unit of mag-
nitude variation suggests that local site effects may have a
strong influence on the amplitudes. This is probably true be-
cause the stations of the ISTN are founded on very different
lithologies. Figure 7 shows the distribution of magnitude re-
siduals after station corrections are enforced. In comparison
to Figure 5, we can easily see that station corrections signif-
icantly reduce the mean and standard deviation of the re-
siduals in all hypocentral distances. Figure 8 compares the
attenuation curve obtained by the nonparametric method be-
fore and after station corrections. The difference between the
two curves is minimal and at most 0.15 unit of magnitude.

Results of the Parametric Method

In the second part of our calculations we attempted a
parametric fit to the observed amplitudes. We adopted Bakun
and Joyner’s (1984) methodology but without station correc-
tion and obtained the following equation for logA0 in the
Alborz region:

logA0 � �1:1725 log�R� � 0:0021R � 0:4450: (6)

The curve was made to observe Richter’s constraint that
logA0�R � 100� � �3. The standard deviation of this fit
was found to be 0.3215. This number is closest to the
standard deviation of the nonparametric model with ΔR �
40 km (0.3213 in Table 2). In Figure 4 the attenuation curve
calculated from equation (6) is shown. There is almost no
difference visible between this curve and that fitted to the
nonparametric results. We also performed the same boot-
strapping tests on the parametric curve. The calculated boot-
strap mean and standard deviation for n are 1.1742 and
�0:0559, respectively, and for K are 0.0021 and �0:0001,
respectively. These results show that the estimated attenua-
tion parameters have acceptable accuracy. In Figure 5b, the
variation of magnitude residuals with magnitudes for the
parametric method are shown. Like in the case of the non-
parametric method, the residuals stay fairly uniform over the
magnitude range, which suggests that the results are not
magnitude dependent.

Shoja-Taheri et al. (2007) used strong-motion data to
derive an attenuation curve for northern Iran. They first per-
formed a linear regression analysis on their data and obtained
a value of K � �00033. Because negative values of K are
not physically acceptable, they argued that adopting a simple
shape for the attenuation curve is insufficient and instead

Figure 6. (a) Residuals obtained from the attenuation curve in-
troduced by Hutton and Boore (1987) as a function of hypocentral
distance. The line is the best-fitting line to the data. (b) Mean values
(circles) and standard deviation (bars) of the magnitude residuals
with distance.

Table 2
Results of Sensitivity Analysis for Distance Increments Used

in the Nonparametric Inversion

ΔR (km) n K c Mean Standard Deviation

H-B 1.110 0.00189 0.591 �0:0044 0.3232
25 1.075 0.00235 0.6155 �0:0077 0.3225
30 1.060 0.00212 0.6496 �0:0029 0.3222
35 1.040 0.00237 0.6829 �0:0011 0.3230
40 1.057 0.00230 0.6556 �0:0023 0.3213
45 1.081 0.00218 0.6204 �0:0070 0.3230
50 1.126 0.00193 0.555 �0:0043 0.3224

The attenuation curve parameters (n, K, and c in equation 5) and mean
and standard deviation of errors in magnitude residuals calculated for our
data are shown. The first row shows the results for Hutton and Boore’s
formula.
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used a trilinear parametrization of the attenuation curve. Fig-
ure 4 compares our curves with that of Shoja-Taheri et al.
(2007). The two results are significantly different at distances
larger than 100 km, which cover the second and third seg-
ments of their curve. Furthermore, they obtained a value of
K � 0:00017 from their trilinear curve, which is an order of
magnitude smaller than our estimate of 0.0023. Bakun and
Joyner (1984) give the following formula for the Q=f ratio:

Q

f
� π

VSK ln 10
: (7)

Taking an average S-wave crustal velocity of VS �
3:5 km=sec, the K value obtained by Shoja-Taheri et al.
would imply a very large Q=f ratio of 2290 in northern Iran.
We believe that this value may be unrealistic for a young
collision zone such as the Alborz. Figure 9 shows the mag-
nitudes of the events used in our study as calculated from the
two magnitude scales. Clearly, our curve gives higher esti-
mates of magnitude, and the difference can be as large as
0.7 unit of magnitude. We can think of two reasons for
the discrepancy between the results of the two studies. First,
Shoja-Taheri et al.’s region, in addition to the Alborz region,
covers the northwestern Iran and parts of northeastern Iran,
which are tectonically distinct from the Alborz. Second, and
more importantly, our datasets differ in both distance and
magnitude ranges. They used strong-motion data in the dis-
tance rang of 0–250 km, and the bulk of their data is in the

Table 3
Station Information and Station Correction Values

Station Latitude �°N� Longitude �°E� Station Correction Standard Deviation Number of Records

AFJ 35.856 51.713 �0:381 0.2162 43
ANJ 35.467 53.914 0.28 0.2268 31
AZR 37.678 45.980 �0:415 0.1631 36
BST 37.700 46.892 0.325 0.1818 53
DMV 35.583 52.028 0.087 0.4031 81
FIR 35.641 52.754 0.258 0.2711 62
GLO 36.502 53.831 �0:261 0.2576 57
GZV 36.385 50.219 �0:094 0.3055 55
HRS 38.318 47.042 0.099 0.111 18
HSB 35.441 51.282 0.133 0.2398 69
HSH 37.307 47.263 0.008 0.283 31
KIA 36.207 53.684 0.288 0.2493 48
LAS 35.382 52.959 0.193 0.2836 42
MHD 35.686 50.668 �0:018 0.2283 71
MRD 38.713 45.703 �0:277 0.2 34
PRN 36.145 52.203 �0:238 0.2463 59
QOM 34.842 51.070 �0:036 0.2108 70
RAZ 35.405 49.929 0.003 0.2083 69
SFB 34.354 52.236 0.174 0.1757 32
SHB 38.283 45.617 �0:059 0.1835 46
SHM 35.807 53.292 �0:213 0.2781 41
SHR 35.806 51.283 �0:248 0.1681 26
SRB 37.825 47.667 �0:082 0.199 38
TBZ 38.233 46.147 0.465 0.2047 40
TEH 35.737 51.382 �0:02 0.2441 44
VRN 34.996 51.728 0.041 0.2243 93

Figure 7. (a) Magnitude residuals (dots) obtained from the at-
tenuation curve calculated in this study after enforcing station cor-
rections. (b) Mean values (circles) and standard deviation (bars) of
the magnitude residuals with distance.
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0–75 km range. They used events withM 4:5 and larger and
at distances larger than 100 km all of their events are larger
thanM 5. On the other hand, our data extends up to 550 km,
and the bulk of our data is in the 50–350 km interval. Further-
more, small earthquakes are present in all distances (see
Fig. 2). As is often the case, strong-motion instruments have
smaller number of distant recordings for smaller earth-
quakes. We believe that Shoja-Taheri et al. should add data
from higher-gain instruments to their analysis in order to
compensate for the underrepresentation of smaller earth-
quakes at larger distances.

Conclusions

AnML scale was derived for the Alborz region of north-
ern Iran using synthetic W-A seismograms calculated from
local networks. We used both parametric and nonparametric
curve fittings to the amplitude readings to derive the empiri-
cal attenuation curve. The results of the two methods are very
similar, and the close agreement between the two curves ex-
tends over the entire distance range considered in the study.
There was no need to use different curve fitting parameters
for different hypocentral intervals in order to make the two
curves agree with each other. For this reason we were able to
find a single value of geometrical spreading n and a single
value of attenuation coefficient K for the entire range con-
sidered. This may reflect the fact that the rather large
event-station paths used in our study (50–100 km) prevented
us from taking into account possible differences in attenua-
tion rate between small and large hypocentral distances.

Our attenuation curves are in close agreement with
the Richter (1958) curve. At distances larger than 350 km,
Richter’s curve gives slightly larger magnitudes (less than
0.25 of a unit). The agreement between our results and that
of Hutton and Boore’s (1987) for southern California is also
very good, although for distances larger than 250 km, the
Hutton and Boore formula underestimates magnitude by less
than 0.25 unit.

Station corrections calculated in this study range from
�0:42 to �0:47 indicating that local site amplification may
have strong influence on magnitude estimates.

Data and Resources

The data used in this study was obtained from the data
bank of the Iranian Seismic Telemetry Network operated by
the Institute of Geophysics of the University of Tehran. The
bulletin and phase readings can be retrieved from http://irsc
.ut.ac.ir (last accessed May 2008). Waveforms can be ob-
tained upon request from the network management.
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